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ABSTRACT

We consider in this paper the positive 0-1 polynomial programming (PP)
problem of finding a 0-1 n-vector x that maximizes ch subject to
f(x) < b where ¢, b >0 and f is an m-vector of polynomials with non-

negative coefficients.

Two types of heuristic methods for solving PP problems were developed.
The various algorithms were tested on randomly generated problems of up to
1000 variables and 200 constraints. Their performance in terms of computational
time and effectiveness was investiaged. The results were extremely encouraging.
Optimal solutions were consistently obtained by some of the heuristic methods
in over 50% of the probliems solved. The effectiveness was on the average
better than 99% and no less than 96.5%. The computational time using the heuristic
for PP problems is on the average 5% of the time required to solve the problems

to optimality.




e

1. Introduction

We consider in this paper the positive 0-1 polynomial programming (PP)
problem of finding a 0-1 n-vector x that maximizes ch subject to
f(x) <b where ¢, b >0 and f is an m-vector of polynomials with non-
negative coefficients.

Two main approaches have been proposed in the literature for solving PP
problems. The first one is a linearization method which converts the PP prob-
lem to an equivalent linear 0-1 programming problem with additional variables
and constraints, see e.g. [3, 4, 13]. The second approach involves solving
the PP problem in its original form. Methods that can be cast into this form
are Branch and Bound (7], Implicit Enumeration [10] and Covering and Generalized
Covering Relaxation Algorithms [5, 6].

However, as in linear integer programming problems, all the algorithms
for solving PP problems suffer from significant computational limitations.
Any of those algorithms can solve only modest size problems. Motivated by
this limitation and in view of the many successful heuristic algorithms that
were developed for linear integer programs, see e.g. [1, 2, 8, 9, 11, 12],
we will construct in this paper some heuristic methods for PP problems.

The methods we develop can be divided into two categories. The first
one is a dual approach that starts by setting all variables equal to one and
decreases their values, one at a time, from one to zero until feasibility is
reached (see also [11, 12] for the linear case). The second approach starts
with a feasible solution to PP and improves it by increasing the value of the
variables until no further improvement is possible (see [9] for the linear

case).
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The various algorithms were tested on hundreds of randomly generated PP
problems of up to 1000 variables and 200 constraints. Their performance in
terms of computation time and, in problems with up to 50 variables and con-
straints, effectiveness, i.e., the percent the objective function value of the
heuristic solution was of the optimal one, was investigated. The computational
results obtained are extremely encouraging. Optimal solutions were consistently
obtained by some of the heuristic methods in over 50% of the problems solved.
Further, the effectiveness was on the average better than 99% and no less than
96.5%. The computational time using the heuristic for PP problems is on the

average 5% of that using the covering relaxation approach described in [6].

2. Preliminary Definitions and Notations

Consider again the positive 0-1 polynomial programming PP problem

n

Maximize X ez
Pt

Subject to fi(x) < bi i=1,...,m
xj e {0,1} o
where fi(x) are polynomials of the form
Pi
f(x) = L a n x
i ik b
k=1 JEN,,
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with Nik any subset of N = {1,...,n}. We will assume that the cj and

b, are all nonnegative and that the a

1 are positive.

ij
If we further assume, without loss of generality, that bi >0 (i=1,...,m)

(since if not, x = 0 1is the only feasible solution), then we can normalize

each polynomial function by dividing all of its coefficients by b Thus

e
we can assume without loss of generality that b = 1. Call this the normalized

problem.
Now, for any given variable xj 3 fi(x) can be written as
ARG T W

fi(x) xjsi(x ) hi(x )

where xj = (X eeesX x ceesX ). We will refer to gj(xj) as the deri-
1) ] j_l’ j+1! )n i

vative of fi(x) with respect to the variable xj. Observe that if a variable
xj is increased from zero to one then gi(xj) is the change in the left hand
side of the ith constraint. The gi(O) can be considered as the consumption
of the right hand side incurred by such an increase. We will refer to gj(O)

i

j.
3 i

We will now briefly motivate the ideas underlying our heuristic methods.

as the linearity of x in fi(x) and denote it by L

When solving a PP problem we would like to first set a variable xj to one
if its contribution to the objective function is as large as possible, while
its consumption of the right hand side is as small as possible. Thus we would

choose to set x, to one if k=j maximized

J
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Further since when x, is increased from zero to one the change in the

b
left hand side of the 1th constraint is gi(xj), we would like gi(xj)

to involve terms with small coefficients and each having a large number of
variables. The main reason for that is to ensure that a further increase of
other variables from zero to one, in particular those which appear in gi(xj),

will consume only a small amount of the right hand side. This leads to the

definition of the weighted linearity of xj in fi(x), denoted by HLi, and
given by
o 5 =

) - zj a5/ 1N, |

keI1
where ‘iikl is the cardinality of iik and gi(xj) is given by
(3) gj(xj) TR R n X

: | j ik reN r
kEIi ik

where Ii and iik are the appropriate sets defining Bi .

If on the other hand we would like to initially set all variables equal
to one, the infeasibility of the ith constraint will be given by (fi(l) -1)+ ’

If x, 1is then decreased from one to zero, the change in the left side will

]

be given by gi(l) and the infeasibility of the ith constraint will drop

to (hi(l) - 1)+ where fi(x) = xjgi(xj) + hi(xj). Now starting with x = 1

and attempting to solve the PP problem we would like to decrease first that

variable x, whose contribution to the objective function is as small as possible

3
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while its consumption of the right hand side is as large as possible in the
violated contraints. Thus we would decrease the value of the variable xj
for which 7 » given by

(o

(4) Sj - j ’
Do, -vt g
i=1

is minimum.

Moreover if gi(xJ) contains terms with large coefficients and which

involve a large number of variables, those terms will be discarded when x

3

is set to zero. Thus we can modify (4) and choose to decrease to zero that

variable for which Ws? , defined by

(£, Q) - ) A
i=1

is minimized.

The quantities Li ’

where the heuristic algorithms for solving PP are described.

WLi s Sj and wsj are used in the next section

3. The Heuristic Algorithms

We will present in this section two types of heuristic algorithms for

solving the PP problem. The first type will start with a feasible solution

P ——




x = 0 and increase the values of the variables one at a time until no further
increase is possible. The order in which the variables are increased is
determined using once their sum of linearities and then the sum of their

weighted linearities. The second type of algorithm will start with an in~
feasible solution x = 1 and use the infeasibility as well as the change in
infeasibility to determine variables to be dropped to zero. This is done until

a feasible solution is reached. Once a feasible solution is at hand, an improve-
ment procedure will be applied to determine whether some of the variables dropped
to zero can be increased back to one. This procedure seems to play a crucial
role in the excellent performance of the second type of algorithms on the PP
problem.

The six different heuristic algorithms can now be formally stated as follows:

Algorithm I:

Step O: Start by setting x =0, I, = by et
IF =0 and M= {1,...,m} .
Step 1: Let j be an index k € IO\IF maximizing
x
P
ieM
6

T




Step 2: Check whether by increasing xj from zero to one any of the
constraints will be violated. If yes go to step 3; otherwise

go to step 4.

Step 3: Set I =1Ig U {j} and By = Id\{j} .

1f IO = @ go to step 5; otherwise go to step 1.

Step 4: Set xj =1, subtract Li from both sides of the ith con-

straint, and normalize the problem, thereby determining modified

a,, and 13 . set 1 =L, UaNih, ,=8. 1f I, =9,

ij i 0 0
go to step 5; otherwise if the kth constraint is redundant

set M = M\{k} and go to step 1.
Step 5: Terminate with x.

Algorithm I can be modified, using the weighted linearities, to produce

Algorithm II:

Same as algorithm I except replace step 1 by

)
Step 1: Let j be an index k € Io\IF maximizing

ieM

e e—ey—
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The next four algorithms will start w..h the optimal solution x =1 to
the relaxation of the PP problem in which the polynomial constraints are dropped

and proceed towards feasibility.

Algorithm III

Step 0: Start with x=1 . If x 1is feasible for PP, terminate. Otherwise

get J = {1.....n} .

Step 1: Determine the set I of indices i for which fi(x) >3 [

Go to step 2.

Step 2: Let k be an index j in J minimizing

(o

Ak

Do, - DY gji(xj)
iel

Set X, = 0. If x 1is feasible, terminate with x; otherwise

replace J by J\{k} and go to step l.

Step 2 of algorithm III can be further modified resulting with algorithm

IV as follows:

Algorithm IV

Same as algorithm III except that in step 2 we let k be an index j

that minimizes




& e
wsd = )

E Gy ~-1 £ 5.1 a

fe1 j £

rEIi

where ﬁir and Ii are defined in (3).

Observe that in algorithms III and IV whenever a variable X, is set
to zero the algorithms return to step 1 and calculate the next best candidate
to be set to zero. The following two algorithms are similar to algorithms

II1T and 1V, however the variables are ordered once and then set to zero one

at a time until feasibility is reached.

Algorithm V:

Step O: Start with x =1 . If x 1is feasible for PP, terminate. Otherwise

go to step 1.

Step 1: Let jl,...,jn be a permutation of the first n integers such that
b J J b
3, % 8 8 1c¢gk orif i<k and ¥ =5k, get x,

equal to zero, in order, one at a time, until feasibility is reached.

Terminate with x .

Algorithm VI:

Same as algorithm V except the variables are ordered in increasing order

of wsd .

The solution x determined by any of the algorithms III to VI can be

further improved. This improvement was found to play a significant role in




the effectiveness of the methods of the second type. To motivate this pro-
cedure observe that a decision to drop the value of a given variable from one
to zero may very well be reversed after other variables having the value one
are forced to zero. Thus after determining a solution x , we would like

to check whether any of the variables dropped to zero can be increased back

to one without violating feasiblity. This can be easily done using the follow-

ing procedure:

Modification Procedure:

Step O: Start with x -~ the solution obtained by any of the heuristic
algorithms III to VI. A Let PP be the problem obtained from PP after

substituting the values of all variables x, that are equal to one

3
in x . (Thus PP involves only those variables whose value is zero
in x.)

Step 1: Use heuristic method II for PP, terminating with x. Decrease to one
the values of those variables in the x from step G that are equal

~

to one in x , and terminate witt this new x .

The above improvement process can be easily modified to incorporate cases
where we would like to test whether a decrease of another variable from one
to zero can improve the heuristic solution. This is done by eliminating the

substitution of that variable in PP in step 0 of the modification process.

4. Computational Results

The six algorithms were coded in Fortran IV and implemented on an IBM

370/168. The performance of the algorithms was tested on a large number of

10
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randomly generated problems and was measured in terms of computational time
and effectiveness, i.e., the percent the objective function value of the heuris-
tic solution was of the optimal one. For the larger problems with up to 1000
variables and 200 constraints, for which an optimal solution was not sought,
the algorithms were compared according to their relative effectiveness.

We have tested the performance of the heuristic algorithms in terms of
five parameters, viz., the number n of variables, the number m of constraints,
the maximum number k of terms per constraint, the maximum number v of
variables in each term, and the degree of tightness & of the constraints.

The data for each PP problem was randomly generated as follows. The
cost vector ¢ was determined by setting c¢c_ =0 and c = ¢, + P where

0 j+l 3

0 1is randomly chosen from [0,10]. The coefficients aij are randomly chosen
m

y was set equal to o ° jil aij :

with o equal to 0.3, 0.5 or 0.9. The number of terms in each constraint

between 0 and 10, while the right hand side b

was randomly chosen between 1 and k and the number of variables in each
term was randomly chosen between 1 and v.

All possible combinations obtained by varying n and m among 30,
40, 50 and o among 0.3, 0.5 and 0.9 were tested. From the results obtained
for the 270 problems that were run, ten for each combination of n, m and
o, we can conclude that method II dominates method I, and methods III and IV
are uniformly superior to methods V and VI both in terms of efficiency and
in computational time. There was no clear-cut choice between methods III and
IV. All problems were initially solved with the original algorithms without
adding the modification procedure. The results obtained by method II were
extremely good and the effectiveness was never below 96.5%. The performance

of methods 111 and IV was not as good and in some cases, especially when the

11




constraints were tight, the effectiveness sometimes fell to 94-95%. However,
both methods III and IV required less computation time to produce their heuristic
solutions. After employing the modification to methods III and IV the solutions
were uniformly improved and many of them reached the optimal value. In most
cases, except when the constraints were very loose, the total computational

time required by the modified methods III and IV exceeded that of method II.

Of the many randomly-generated problems solved, method II reached optimality

in about 50% of the problems, while methods III and IV did so in about 30%

of the problems. After employing the modification process on methods III and

IV, they reached optimality in about 607 of the problems solved.

The influence of the number of variables, number of constraints and tight-
ness of the constraints on computational time and effectiveness in algorithm II
and the modified algorithms IIT and IV is summarized in Table 1 and Figure 1.
The slopes a and the intercepts b for each line in Figure 1 were obtained
using averages from all runs in which one of the factors was kept constant and
all others were changed in their given ranges.

The effectiveness of all three methods was not affected by either the
number of constraints or the number of variables. However, as shown in Figure 1
the effectiveness decreases for method II and increases for methods III and IV
with a decrease in constraint tightness. Computation time, however, increases
for all three methods with an increase in the number of variables and/or con-
straints. This increase in computation time is strongly influenced by the
tightness of the constraints. Indeed method II is faster for tight constraints,
while methods III and IV are faster for loose constraints. By comparing

the performance of the three methods we observe that for a = 0.3 and 0.5,
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method 11 is almost uniformly faster than methods III and IV. However, for

a = 0.9 methods IIL and 1V become faster than method 11, especially for the
larger problems. In fact, for o = 0.9 methods IIl and IV without the modi-
fication process are as effective as method II. Moreover, they require sig-
nificantly less computation time to produce the heuristic solutions than is
required by method II. These results are summarized in Table 2. Indeed in
Table 2 we observe that the effectiveness of the three methods is about the
same and that methods 1IT and IV are almost three times faster than method II.

In Table 3 and Figure 3 we exhibit the influence of a change in the maxi-
mum number of terms k in each constraint and the maximum number of variables
v in each term on both effectiveness and computation time.

The computation time is increased for all three algorithms with an increase
in either k or v , however with a much larger slope for method II than for
methods III and IV. Again the effectiveness of neither of these methods is
superior to the other two. It is interesting to note that when either k or
v is very small (average of 2) the effectiveness of all three methods is
worst.

The performance of methods II and modified methods III and IV was then
tested on some large problems of up to 1000 variables and 200 constraints that
were generated in a similar way to those generated before. No attempt has
been made to find optimal solutions for those problems because of the excessive
computation time it would require. The performance of the three methods was
compared by means of their effectiveness relative to the best heuristic obtained
and by time relative to the worst time obtained. The results were averaged

from ten runs and are summarized in Table 4.
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From Table 4 we observe that the relative effectiveness of modified
methods 1II and IV seem to improve slightly with an increase in the number
of variables. It is interesting to note that the relative effectiveness of the
three methods remains nearly constant, ranging between 98.39 to 99.99%. The
relative time on the other hand decreases almost linearily for modified methods

IITI and IV. This makes them more attractive for large size problems.
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